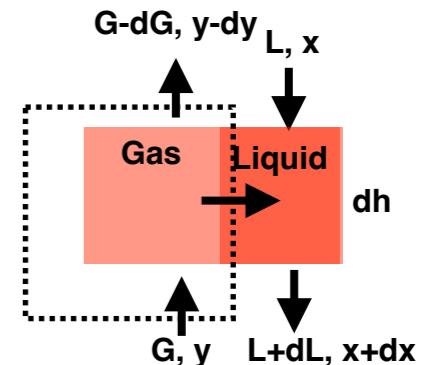


Review quiz

Consider the following case of mass balance on an absorption column where a gas is being absorbed. The gas is concentrated. Which of the following statements is correct.


- A. The gas flow rate is constant.
- B. The absorbent flow rate is constant.
- C. Mass transfer takes place from liquid to gas.
- D. Equilibrium line is no longer in Henry's regime.

Review quiz

In the following statement, what is y^*

$$\text{Accumulation} = \text{in} - \text{out}$$

$$0 = Gy - (G - dG)(y - dy) - K_y(y - y^*)aAdh$$

- A. $y^* = y_i$ where y_i is interfacial gas concentration.
- B. $y^* = mx$ where x is dissolved gas concentration in the bulk liquid.
- C. $y^* = mx_i$ where x_i is dissolved gas concentration in the at the liquid-gas interface.
- D. y^* is hypothetical concentration which depends on mass transfer but not on thermodynamics.

Review quiz

Which is the expected order for heat of adsorption

- A. $F < Cl < Br < I$
- B. $F > Cl > Br > I$
- C. $F = Cl = Br = I$
- D. $F < Cl = Br = I$

Review quiz

What will happen if pressure is low in the case of Langmuir isotherm

$$\theta = \frac{KP}{1+KP}$$

- A. $\theta = 1$
- B. $\theta = 0$
- C. θ will follow Henry regime
- D. Langmuir isotherm is not valid at low pressure

Review quiz

Which of the following is true

- A. Physisorbents refer to gases whereas chemisorbents refer to all chemicals.
- B. Physisorbents have low binding energy, chemisorbents have high binding energy.
- C. Physisorbents are not reversible but chemisorbents are reversible.
- D. Both rely on extremely strong affinity with the solutes.

A natural gas from a well in offshore Norway has CO₂ concentration of 20% (molar basis). CO₂ needs to be captured and sequestered to curb global warming. Therefore, the gas needs to be treated to reduce CO₂ concentration to 1%. For this, you decided to create a pilot plant test using a packed bed absorption column contacting with liquid amine at 25 °C in a countercurrent fashion. The height of column is 1.0 meter and its cross-sectional area is 0.1 m². An amine is available as an absorbent with 0.01% of CO₂. You decided to use 100 mole/s of amine and 10 mole/s of natural gas. You have designed the system to perfection and equilibrium is established at the contact between the gas phase and the liquid phase. Assuming the case of concentrated absorption:

1. Calculate the concentration of CO₂ in the outlet stream of the amine.
2. Calculate HTU and NTU using approximate method with height formula shown below. $y_1^* = 10x_0$; $y_{N+1}^* = 2x_N$
3. Calculate the gas phase overall mass transfer coefficient, K_{ya}.

$$y_1^* = 10x_0$$

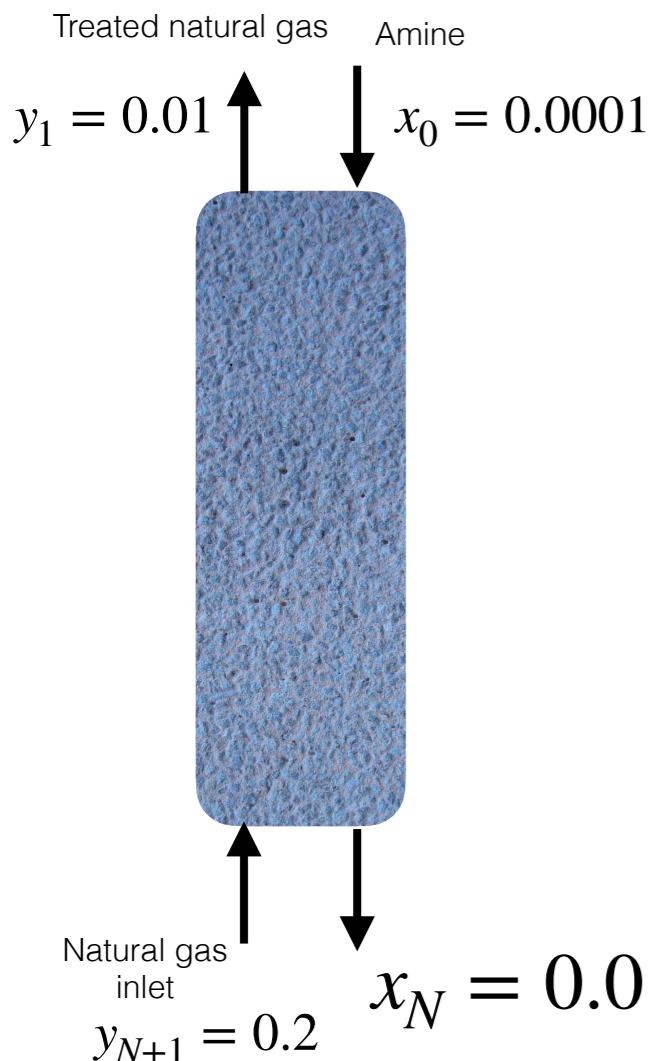
Treated natural gas Amine

$$y_1 = 0.01 \quad x_0 = 0.0001$$

$$h = \left(\frac{G_c}{K_y a A} \right) \frac{y_{N+1} - y_1}{(y - y^*)_{N+1} - (y - y^*)_1} \ln \left[\frac{(y - y^*)_{N+1}}{(y - y^*)_1} \right]$$

$$h = 1$$

$$y_1^* = 10x_0 = 10 * 0.0001 = 0.001$$


$$G = \frac{G_c}{1 - y_{N+1}} \quad G_c = G(1 - y_{N+1}) = 10 * (1 - 0.2) = 8 \text{ mole/s}$$

$$L = \frac{L_A}{1 - x_0} \quad L_A = L(1 - x_0) = 100 * (1 - 0.0001) \approx 100 \text{ mole/s}$$

Natural gas inlet

$$y_{N+1} = 0.2 \quad y_{N+1}^* = 2x_N$$

Overall balance to calculate x_N

$$(L)_N x_N - (L)_0 x_0 = (G)_{N+1} y_{N+1} - (G)_1 y_1$$

$$\frac{L_A}{1-x_N} x_N - \frac{L_A}{1-x_0} x_0 = \frac{G_c}{1-y_{N+1}} y_{N+1} - \frac{G_c}{1-y_1} y_1$$

$$x_N = 0.019$$

$$h = \left(\frac{G_c}{K_y a A} \right) \frac{y_{N+1} - y_1}{(y - y^*)_{N+1} - (y - y^*)_1} \ln \left[\frac{(y - y^*)_{N+1}}{(y - y^*)_1} \right]$$

$$NTU = 3.6$$

$$HTU = \frac{G_c}{K_y a A} = h/NTU = 0.28$$

$$\Rightarrow K_y a = 285.7$$

In-class exercise problem

Calculate and compare θ for benzene in activated carbon at 0.1 bar and 10 bars using the following isotherms

1. Henry's $q = HP, q_{max} = 0.1 \frac{mol \text{ solute}}{mol \text{ adsorbent}}$ $H = 0.0016 \text{ bar}^{-1}$

2. Langmuir $\theta = \frac{q}{q_{max}} = \frac{KP}{1+KP}$ $K = 0.01 \text{ bar}^{-1}$

3. Freundlich

$$\theta = KP^{\frac{1}{n}} \quad K = 0.002 \text{ bar}^n \quad n = 3$$

	θ	
	$P = 0.1 \text{ bar}$	$P = 10 \text{ bar}$
Henry's	1.60E-03	1.6E-01
Langmuir	9.99E-04	9.09E-02
Freundlich	9.28E-04	4.31E-03